Recent Advances in the Application of High Pressure Processing-Based Hurdle Approach for Enhancement of Food Safety and Quality

Various conventional and novel technologies have been investigated to address the problems of food safety and quality. However, every technique is associated with some certain limitations and some concerns remain unanswered. High pressure processing (HPP) is one of the emerging technologies which have been implemented in food industries.
Methods
In this review, we focus on the recent advancements of HPP combined with other physical-, physico-chemical-, and biological-based methods for the improvement of food safety and quality.
Results
Researchers have reported several positive applications of HPP in food sector. Yet, there are some challenges of this technique like HPP-induced lipid oxidation, baroresistant of bacterial spores, changes in food color, and high investment costs of HPP machine. The challenges and limitations of HPP could be addressed by hurdle technology approach. The concept of hurdle technology which is also commonly referred to as combined technique has become a promising approach that simultaneously enhances microbial safety while minimizing the degradation of food quality attributes.
Conclusions
Several researches have indicated the combined processing parameters based on the hurdle technology concept improves effectiveness and prospects in food treatment with the potential of achieving synergistic effects. The intelligent combination of hurdles would augment the food safety and quality in addition to the economic properties of food products.
This is a preview of subscription content, log in via an institution to check access.
Access this article
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
Instant access to the full article PDF.
Rent this article via DeepDyve


Similar content being viewed by others

Response of Foodborne Pathogens to High-Pressure Processing
Chapter © 2022

Impact of High-Pressure Processing on Food Quality
Chapter © 2019

Non-thermal Processing of Foods: Recent Advances
Chapter © 2023
References
- Abid, M., Jabbar, S., Hu, B., Hashim, M. M., Wu, T., Wu, Z., Khan, M. A., & Zeng, X. (2014). Synergistic impact of sonication and high hydrostatic pressure on microbial and enzymatic inactivation of apple juice. LWT-Food Science and Technology, 59(1), 70–76. https://doi.org/10.1016/j.lwt.2014.04.039. ArticleGoogle Scholar
- Ahmadi, H., Anany, H., Walkling-Ribeiro, M., & Griffiths, M. (2015). Biocontrol of Shigella flexneri in ground beef and Vibrio cholerae in seafood with bacteriophage-assisted high hydrostatic pressure (HHP) treatment. Food and Bioprocess Technology, 8(5), 1160–1167. https://doi.org/10.1007/s11947-015-1471-6. ArticleGoogle Scholar
- Ananou, S., Garriga, M., Jofré, A., Aymerich, T., Gálvez, A., Maqueda, M., Martínez-Bueno, M., & Valdivia, E. (2010). Combined effect of enterocin AS-48 and high hydrostatic pressure to control food-borne pathogens inoculated in low acid fermented sausages. Meat Science, 84(4), 594–600. https://doi.org/10.1016/j.meatsci.2009.10.017. ArticleGoogle Scholar
- Andrés, V., Villanueva, M. J., & Tenorio, M. D. (2016). The effect of high-pressure processing on colour, bioactive compounds, and antioxidant activity in smoothies during refrigerated storage. Food Chemistry, 192, 328–335. https://doi.org/10.1016/j.foodchem.2015.07.031. ArticleGoogle Scholar
- Balasubramaniam, V. B., Martinez-Monteagudo, S. I., & Gupta, R. (2015). Principles and application of high pressure–based technologies in the food industry. Annual Review of Food Science and Technology, 6, 435–462. https://doi.org/10.1146/annurev-food-022814-015539. ArticleGoogle Scholar
- Barba, F. J., Criado, M. N., Belda-Galbis, C. M., Esteve, M. J., & Rodrigo, D. (2014). Stevia rebaudiana Bertoni as a natural antioxidant/antimicrobial for high pressure processed fruit extract: processing parameter optimization. Food Chemistry, 148, 261–267. https://doi.org/10.1016/j.foodchem.2013.10.048. ArticleGoogle Scholar
- Barbosa-Canovas, G. V., Pothakamurry, U. R., Palou, E., & Swanson, B. G. (1998). High hydrostatic pressure food processing. In E. Palou (Ed.), Non Thermal Preservation of Foods (pp. 8–52). New York, USA: Marcel Dekker, Inc.. Google Scholar
- Bleoancă, I., Saje, K., Mihalcea, L., Oniciuc, E.-A., Smole-Mozina, S., Nicolau, A. I., & Borda, D. (2016). Contribution of high pressure and thyme extract to control Listeria monocytogenes in fresh cheese - a hurdle approach. Innovative Food Science & Emerging Technologies, 38, 7–14. https://doi.org/10.1016/j.ifset.2016.09.002. ArticleGoogle Scholar
- Bolumar, T., LaPeña, D., Skibsted, L. H., & Orlien, V. (2016). Rosemary and oxygen scavenger in active packaging for prevention of high-pressure induced lipid oxidation in pork patties. Food Packaging and Shelf Life, 7, 26–33. https://doi.org/10.1016/j.fpsl.2016.01.002. ArticleGoogle Scholar
- Cava, R., Ladero, L., González, S., Carrasco, A., & Ramírez, M. R. (2009). Effect of pressure and holding time on colour, protein and lipid oxidation of sliced dry-cured Iberian ham and loin during refrigerated storage. Innovative Food Science & Emerging Technologies, 10(1), 76–81. https://doi.org/10.1016/j.ifset.2008.09.005. ArticleGoogle Scholar
- Chakraborty, S., Rao, P. S., & Mishra, H. N. (2019). Modeling the inactivation of pectin methylesterase in pineapple puree during combined high-pressure and temperature treatments. Innovative Food Science & Emerging Technologies, 52, 271–281. https://doi.org/10.1016/j.ifset.2019.01.008. ArticleGoogle Scholar
- Cheah, P., & Ledward, D. (1996). High pressure effects on lipid oxidation in minced pork. Meat Science, 43(2), 123–134. https://doi.org/10.1016/0309-1740(96)84584-0. ArticleGoogle Scholar
- Cheah, P., & Ledward, D. (1997). Catalytic mechanism of lipid oxidation following high pressure treatment in pork fat and meat. Journal of Food Science, 62(6), 1135–1139. https://doi.org/10.1111/j.1365-2621.1997.tb12229.x. ArticleGoogle Scholar
- Chen, D., Pang, X., Zhao, J., Gao, L., Liao, X., Wu, J., & Li, Q. (2015). Comparing the effects of high hydrostatic pressure and high temperature short time on papaya beverage. Innovative Food Science & Emerging Technologies, 32, 16–28. https://doi.org/10.1016/j.ifset.2015.09.018. ArticleGoogle Scholar
- Chevalier, D., Le Bail, A., & Ghoul, M. (2001). Effects of high pressure treatment (100–200 MPa) at low temperature on turbot (Scophthalmus maximus) muscle. Food Research International, 34(5), 425–429. https://doi.org/10.1016/S0963-9969(00)00187-3. ArticleGoogle Scholar
- Das, S., Lalitha, K. V., Joseph, G., Kamalakanth, C. K., & Bindu, J. (2016). High pressure destruction kinetics along with combined effect of potassium sorbate and high pressure against Listeria monocytogenes in Indian white prawn muscle. Annals of Microbiology, 66(1), 245–251. https://doi.org/10.1007/s13213-015-1100-7. ArticleGoogle Scholar
- de Alba, M., Bravo, D., & Medina, M. (2013). Inactivation of Escherichia coli O157:H7 in dry-cured ham by high-pressure treatments combined with biopreservatives. Food Control, 31(2), 508–513. https://doi.org/10.1016/j.foodcont.2012.11.043. ArticleGoogle Scholar
- Dermesonlouoglou, E. K., Angelikaki, F., Giannakourou, M. C., Katsaros, G. J., & Taoukis, P. S. (2019). Minimally processed fresh-cut peach and apricot snacks of extended shelf-life by combined osmotic and high pressure processing. Food and Bioprocess Technology, 12(3), 371–386. https://doi.org/10.1007/s11947-018-2215-1. ArticleGoogle Scholar
- Dissing, J., Bruun-Jensen, L., & Skibsted, L. H. (1997). Effect of high-pressure treatment on lipid oxidation in turkey thigh muscle during chill storage. Zeitschrift für Lebensmitteluntersuchung und-Forschung A, 205(1), 11–13. https://doi.org/10.1007/s002170050115. ArticleGoogle Scholar
- Dong, X.-h., Li, J., Jiang, G.-x., Li, H.-y., Zhao, M.-m., & Jiang, Y.-m. (2019). Effects of combined high pressure and enzymatic treatments on physicochemical and antioxidant properties of peanut proteins. Food Science & Nutrition, 7(4), 1417–1425. https://doi.org/10.1002/fsn3.976. ArticleGoogle Scholar
- Duong, T., & Balaban, M. (2014). Optimisation of the process parameters of combined high hydrostatic pressure and dense phase carbon dioxide on enzyme inactivation in feijoa (Acca sellowiana) puree using response surface methodology. Innovative Food Science & Emerging Technologies, 26, 93–101. https://doi.org/10.1016/j.ifset.2014.09.005. ArticleGoogle Scholar
- Duranton, F., Guillou, S., Simonin, H., Chéret, R., & de Lamballerie, M. (2012). Combined use of high pressure and salt or sodium nitrite to control the growth of endogenous microflora in raw pork meat. Innovative Food Science & Emerging Technologies, 16, 373–380. https://doi.org/10.1016/j.ifset.2012.08.004. ArticleGoogle Scholar
- Evelyn, & Silva, F. V. M. (2015). Inactivation of Byssochlamys nivea ascospores in strawberry puree by high pressure, power ultrasound and thermal processing. International Journal of Food Microbiology, 214, 129–136. https://doi.org/10.1016/j.ijfoodmicro.2015.07.031. ArticleGoogle Scholar
- Evelyn, & Silva, F. V. M. (2016). High pressure processing pretreatment enhanced the thermosonication inactivation of Alicyclobacillus acidoterrestris spores in orange juice. Food Control, 62, 365–372. https://doi.org/10.1016/j.foodcont.2015.11.007. ArticleGoogle Scholar
- Faustman, C., Sun, Q., Mancini, R., & Suman, S. P. (2010). Myoglobin and lipid oxidation interactions: mechanistic bases and control. Meat Science, 86(1), 86–94. https://doi.org/10.1016/j.meatsci.2010.04.025. ArticleGoogle Scholar
- Gayán, E., Torres, J. A., & Paredes-Sabja, D. (2012). Hurdle approach to increase the microbial inactivation by high pressure processing: effect of essential oils. Food Engineering Reviews, 4(3), 141–148. https://doi.org/10.1007/s12393-012-9055-y. ArticleGoogle Scholar
- Ginsau, M. (2015). High pressure processing: a novel food preservation technique. IOSR Journal of Environmental Science, Toxicology and Food Technology, 9, 109–113. https://doi.org/10.9790/2402-0951109113. ArticleGoogle Scholar
- Gomes, W. F., Tiwari, B. K., Rodriguez, Ó., de Brito, E. S., Fernandes, F. A. N., & Rodrigues, S. (2017). Effect of ultrasound followed by high pressure processing on prebiotic cranberry juice. Food Chemistry, 218, 261–268. https://doi.org/10.1016/j.foodchem.2016.08.132. ArticleGoogle Scholar
- Gómez-Estaca, J., López-Caballero, M., Gómez-Guillén, M., de Lacey, A. L., & Montero, P. (2009). High pressure technology as a tool to obtain high quality carpaccio and carpaccio-like products from fish. Innovative Food Science & Emerging Technologies, 10(2), 148–154. https://doi.org/10.1016/j.ifset.2008.10.006. ArticleGoogle Scholar
- Gómez-Estaca, J., López-Caballero, M. E., Martínez-Bartolomé, M. Á., de Lacey, A. M. L., Gómez-Guillen, M. C., & Montero, M. P. (2018). The effect of the combined use of high pressure treatment and antimicrobial edible film on the quality of salmon carpaccio. International Journal of Food Microbiology, 283, 28–36. https://doi.org/10.1016/j.ijfoodmicro.2018.06.015. ArticleGoogle Scholar
- Hofstetter, S., Gebhardt, D., Ho, L., Gänzle, M., & McMullen, L. M. (2013). Effects of nisin and reutericyclin on resistance of endospores of Clostridium spp. to heat and high pressure. Food Microbiology, 34(1), 46–51. https://doi.org/10.1016/j.fm.2012.11.001. ArticleGoogle Scholar
- Huang, H. W., Hsu, C. P., & Wang, C. Y. (2019). Healthy expectations of high hydrostatic pressure treatment in food processing industry. Journal of Food and Drug Analysis, 28(1), 1–13. https://doi.org/10.1016/j.jfda.2019.10.002. ArticleGoogle Scholar
- Igual, M., Sampedro, F., Martínez-Navarrete, N., & Fan, X. (2013). Combined osmodehydration and high pressure processing on the enzyme stability and antioxidant capacity of a grapefruit jam. Journal of Food Engineering, 114(4), 514–521. https://doi.org/10.1016/j.jfoodeng.2012.09.006. ArticleGoogle Scholar
- Kamat, S. S., Dash, K. K., & Balasubramaniam, V. M. (2018). Quality changes in combined pressure-thermal treated acidified vegetables during extended ambient temperature storage. Innovative Food Science & Emerging Technologies, 49, 146–157. https://doi.org/10.1016/j.ifset.2018.08.008. ArticleGoogle Scholar
- Kaur, B. P., Kaushik, N., Rao, P. S., & Chauhan, O. (2013). Effect of high-pressure processing on physical, biochemical, and microbiological characteristics of black tiger shrimp (Penaeus monodon). Food and Bioprocess Technology, 6(6), 1390–1400. https://doi.org/10.1007/s11947-012-0870-1. ArticleGoogle Scholar
- Kaur, L., Astruc, T., Vénien, A., Loison, O., Cui, J., Irastorza, M., & Boland, M. (2016). High pressure processing of meat: effects on ultrastructure and protein digestibility. Food & function, 7(5), 2389–2397. https://doi.org/10.1039/C5FO01496D. ArticleGoogle Scholar
- Kaushik, N., Kaur, B. P., & Rao, P. S. (2014). Application of high pressure processing for shelf life extension of litchi fruits (Litchi chinensis cv. Bombai) during refrigerated storage. Food Science and Technology International, 20(7), 527–541. https://doi.org/10.1177/1082013213496093. ArticleGoogle Scholar
- Kaushik, N., Nadella, T., & Rao, P. S. (2015). Impact of pH and total soluble solids on enzyme inactivation kinetics during high pressure processing of mango (Mangifera indica) pulp. Journal of Food Science, 80(11), E2459–E2470. https://doi.org/10.1111/1750-3841.13069. ArticleGoogle Scholar
- Khan, I., Tango, C. N., Miskeen, S., Lee, B. H., & Oh, D.-H. (2017). Hurdle technology: a novel approach for enhanced food quality and safety – a review. Food Control, 73, 1426–1444. https://doi.org/10.1016/j.foodcont.2016.11.010. ArticleGoogle Scholar
- Komora, N., Maciel, C., Pinto, C. A., Ferreira, V., Brandão, T. R. S., Saraiva, J. M. A., Castro, S. M., & Teixeira, P. (2020). Non-thermal approach to Listeria monocytogenes inactivation in milk: the combined effect of high pressure, pediocin PA-1 and bacteriophage P100. Food Microbiology, 86, 103315. https://doi.org/10.1016/j.fm.2019.103315. ArticleGoogle Scholar
- Kumar, V., Rao, P. S., Purohit, S. R., & Kumar, Y. (2019). Effects of high pressure processing (HPP) and acid pre-treatment on quality attributes of hilsa (Tenualosa ilisha) fillets. LWT-Food Science and Technology, 111, 647–652. https://doi.org/10.1016/j.lwt.2019.05.084. ArticleGoogle Scholar
- Lee, J. H., Song, K. B., Choi, E. J., Kim, H. K., Park, H. W., & Chun, H. H. (2019a). Combined effects of high hydrostatic pressure treatment and red ginseng concentrate supplementation on the inactivation of foodborne pathogens and the quality of ready-to-use kimchi sauce. LWT-Food Science and Technology, 114, 108410. https://doi.org/10.1016/j.lwt.2019.108410. ArticleGoogle Scholar
- Lee, S. H., Choe, J., Shin, D. J., Yong, H. I., Choi, Y., Yoon, Y., & Jo, C. (2019b). Combined effect of high pressure and vinegar addition on the control of Clostridium perfringens and quality in nitrite-free emulsion-type sausage. Innovative Food Science & Emerging Technologies, 52, 429–437. https://doi.org/10.1016/j.ifset.2019.02.006. ArticleGoogle Scholar
- Leistner, L. (1992). Food preservation by combined methods. Food Research International, 25(2), 151–158. https://doi.org/10.1016/0963-9969(92)90158-2. ArticleGoogle Scholar
- Leistner, L. (2000). Basic aspects of food preservation by hurdle technology. International Journal of Food Microbiology, 55(1), 181–186. https://doi.org/10.1016/S0168-1605(00)00161-6. ArticleGoogle Scholar
- Li, R., Hou, Z., Zou, H., Wang, Y., & Liao, X. (2018). Inactivation kinetics, structural, and morphological modification of mango soluble acid invertase by high pressure processing combined with mild temperatures. Food Research International, 105, 845–852. https://doi.org/10.1016/j.foodres.2017.12.018. ArticleGoogle Scholar
- Liu, G., Carøe, C., Qin, Z., Munk, D. M. E., Crafack, M., Petersen, M. A., & Ahrné, L. (2020). Comparative study on quality of whole milk processed by high hydrostatic pressure or thermal pasteurization treatment. LWT-Food Science and Technology, 127, 109370. https://doi.org/10.1016/j.lwt.2020.109370. ArticleGoogle Scholar
- Liu, G., Wang, Y., Gui, M., Zheng, H., Dai, R., & Li, P. (2012). Combined effect of high hydrostatic pressure and enterocin LM-2 on the refrigerated shelf life of ready-to-eat sliced vacuum-packed cooked ham. Food Control, 24(1), 64–71. https://doi.org/10.1016/j.foodcont.2011.09.004. ArticleGoogle Scholar
- Ma, H., Ledward, D., Zamri, A., Frazier, R., & Zhou, G. (2007). Effects of high pressure/thermal treatment on lipid oxidation in beef and chicken muscle. Food Chemistry, 104(4), 1575–1579. https://doi.org/10.1016/j.foodchem.2007.03.006. ArticleGoogle Scholar
- Makita, T. (1992). Application of high pressure and thermo physical properties of water to biotechnology. Fluid Phase Equilibria, 76, 87–95. https://doi.org/10.1016/0378-3812(92)85079-N. ArticleGoogle Scholar
- Marcos, B., Aymerich, T., Garriga, M., & Arnau, J. (2013). Active packaging containing nisin and high pressure processing as post-processing listericidal treatments for convenience fermented sausages. Food Control, 30(1), 325–330. https://doi.org/10.1016/j.foodcont.2012.07.019. ArticleGoogle Scholar
- Martínez-Monteagudo, S. I., & Saldaña, M. D. (2014). Modeling the retention kinetics of conjugated linoleic acid during high-pressure sterilization of milk. Food Research International, 62, 169–176. https://doi.org/10.1016/j.foodres.2014.02.014. ArticleGoogle Scholar
- Martínez-Monteagudo, S. I., Saldaña, M. D., Torres, J. A., & Kennelly, J. J. (2012). Effect of pressure-assisted thermal sterilization on conjugated linoleic acid (CLA) content in CLA-enriched milk. Innovative Food Science & Emerging Technologies, 16, 291–297. https://doi.org/10.1016/j.ifset.2012.07.004. ArticleGoogle Scholar
- Medina-Meza, I. G., Barnaba, C., & Barbosa-Cánovas, G. V. (2014). Effects of high pressure processing on lipid oxidation: a review. Innovative Food Science & Emerging Technologies, 22, 1–10. https://doi.org/10.1016/j.ifset.2013.10.012. ArticleGoogle Scholar
- Mertens, B. (1995). Hydrostatic pressure treatment of food: equipment and processing. In G. W. Gould (Ed.), New Methods of Food Preservation (pp. 135–158). London, UK: Academic and Professional. Chapman & Hall. https://doi.org/10.1007/978-1-4615-2105-1_7. ChapterGoogle Scholar
- Misiou, O., van Nassau, T. J., Lenz, C. A., & Vogel, R. F. (2018). The preservation of Listeria-critical foods by a combination of endolysin and high hydrostatic pressure. International Journal of Food Microbiology, 266, 355–362. https://doi.org/10.1016/j.ijfoodmicro.2017.10.004. ArticleGoogle Scholar
- Mizi, L., Cofrades, S., Bou, R., Pintado, T., López-Caballero, M. E., Zaidi, F., & Jiménez-Colmenero, F. (2019). Antimicrobial and antioxidant effects of combined high pressure processing and sage in beef burgers during prolonged chilled storage. Innovative Food Science & Emerging Technologies, 51, 32–40. https://doi.org/10.1016/j.ifset.2018.04.010. ArticleGoogle Scholar
- Molina-Gutierrez, A., Stippl, V., Delgado, A., Gänzle, M. G., & Vogel, R. F. (2002). In situ determination of the intracellular pH of Lactococcus lactis and Lactobacillus plantarum during pressure treatment. Applied and Environmental Microbiology, 68(9), 4399–4406. https://doi.org/10.1128/aem.68.9.4399-4406.2002. ArticleGoogle Scholar
- Monfort, S., Ramos, S., Meneses, N., Knorr, D., Raso, J., & Álvarez, I. (2012). Design and evaluation of a high hydrostatic pressure combined process for pasteurization of liquid whole egg. Innovative Food Science & Emerging Technologies, 14, 1–10. https://doi.org/10.1016/j.ifset.2012.01.004. ArticleGoogle Scholar
- Montiel, R., Bravo, D., de Alba, M., Gaya, P., & Medina, M. (2012). Combined effect of high pressure treatments and the lactoperoxidase system on the inactivation of Listeria monocytogenes in cold-smoked salmon. Innovative Food Science & Emerging Technologies, 16, 26–32. https://doi.org/10.1016/j.ifset.2012.03.005. ArticleGoogle Scholar
- Mozhaev, V. V., Heremans, K., Frank, J., Masson, P., & Balny, C. (1994). Exploiting the effects of high hydrostatic pressure in biotechnological applications. Trends in Biotechnology, 12(12), 493–501. https://doi.org/10.1016/0167-7799(94)90057-4. ArticleGoogle Scholar
- Naik, L., Sharma, R., Rajput, Y., & Manju, G. (2013). Application of high pressure processing technology for dairy food preservation-future perspective: a review. Journal of Animal Production Advances, 3(8), 232–241. https://doi.org/10.5455/japa.20120512104313. ArticleGoogle Scholar
- Nassar, K. S., Zhang, S., Lu, J., Pang, X., Ragab, E. S., Yue, Y., & Lv, J. (2019). Combined effects of high-pressure treatment and storage temperature on the physicochemical properties of caprine milk. International Dairy Journal, 96, 66–72. https://doi.org/10.1016/j.idairyj.2019.03.003. ArticleGoogle Scholar
- Norton, T., & Sun, D.-W. (2008). Recent advances in the use of high pressure as an effective processing technique in the food industry. Food and Bioprocess Technology, 1(1), 2–34. https://doi.org/10.1007/s11947-007-0007-0. ArticleGoogle Scholar
- Nura, A., Chukwuma, A. C., & Oneh, A. J. (2016). Critical review on principles and applications of hurdle technology in food preservation. Annals. Food Science and Technology, 17(2), 485–491. Google Scholar
- O’ Neill, C. M., Cruz-Romero, M. C., Duffy, G., & Kerry, J. P. (2018). Shelf life extension of vacuum-packed salt reduced frankfurters and cooked ham through the combined application of high pressure processing and organic acids. Food Packaging and Shelf Life, 17, 120–128. https://doi.org/10.1016/j.fpsl.2018.06.008. ArticleGoogle Scholar
- O’Neill, C. M., Cruz-Romero, M. C., Duffy, G., & Kerry, J. P. (2019). Improving marinade absorption and shelf life of vacuum packed marinated pork chops through the application of high pressure processing as a hurdle. Food Packaging and Shelf Life, 21, 100350. https://doi.org/10.1016/j.fpsl.2019.100350. ArticleGoogle Scholar
- Orlien, V., Hansen, E., & Skibsted, L. H. (2000). Lipid oxidation in high-pressure processed chicken breast muscle during chill storage: critical working pressure in relation to oxidation mechanism. European Food Research and Technology, 211(2), 99–104. https://doi.org/10.1007/s002179900118. ArticleGoogle Scholar
- Petrus, R. R., Churey, J. J., Humiston, G. A., Cheng, R. M., & Worobo, R. W. (2019). The combined effect of high pressure processing and dimethyl dicarbonate to inactivate foodborne pathogens in apple juice. Brazilian Journal of Microbiology, 51, 779–785. https://doi.org/10.1007/s42770-019-00145-8. ArticleGoogle Scholar
- Pokhrel, P. R., Toniazzo, T., Boulet, C., Oner, M. E., Sablani, S. S., Tang, J., & Barbosa-Cánovas, G. V. (2019). Inactivation of Listeria innocua and Escherichia coli in carrot juice by combining high pressure processing, nisin, and mild thermal treatments. Innovative Food Science & Emerging Technologies, 54, 93–102. https://doi.org/10.1016/j.ifset.2019.03.007. ArticleGoogle Scholar
- Ramaroson, M., Guillou, S., Rossero, A., Rezé, S., Anthoine, V., Moriceau, N., Martin, J. L., Duranton, F., & Zagorec, M. (2018). Selection procedure of bioprotective cultures for their combined use with High Pressure Processing to control spore-forming bacteria in cooked ham. International Journal of Food Microbiology, 276, 28–38. https://doi.org/10.1016/j.ijfoodmicro.2018.04.010. ArticleGoogle Scholar
- Rao, P. S., Chakraborty, S., Kaushik, N., Kaur, B. P., & Hulle, N. S. (2014). High hydrostatic pressure processing of food materials. In J. K. Sahu (Ed.), Introduction to Advanced Food Process Engineering (pp. 151–186). London, UK: CRC Press. ChapterGoogle Scholar
- Raouche, S., Mauricio-Iglesias, M., Peyron, S., Guillard, V., & Gontard, N. (2011). Combined effect of high pressure treatment and anti-microbial bio-sourced materials on microorganisms’ growth in model food during storage. Innovative Food Science & Emerging Technologies, 12(4), 426–434. https://doi.org/10.1016/j.ifset.2011.06.012. ArticleGoogle Scholar
- Rodríguez-Calleja, J. M., Cruz-Romero, M. C., O’Sullivan, M. G., García-López, M. L., & Kerry, J. P. (2012). High-pressure-based hurdle strategy to extend the shelf-life of fresh chicken breast fillets. Food Control, 25(2), 516–524. https://doi.org/10.1016/j.foodcont.2011.11.014. ArticleGoogle Scholar
- Sakharam, P., Prajapati, J. P., & Jana, A. H. (2015). High hydrostatic pressure treatment for dairy applications. National Seminar on Indian Dairy Industry-Opportunities and Challenges, pp. 176-180. Anand, Gujarat, 8-9 January.
- Sazonova, S., Galoburda, R., & Gramatina, I. (2017). Application of high-pressure processing for safety and shelf-life quality of meat–a review. 11thBaltic Conference on Food Science and Technology “FOODBALT 2017”, pp. 17-22. Latvia. https://doi.org/10.22616/foodbalt.2017.001.
- Sequeira-Munoz, A., Chevalier, D., LeBail, A., Ramaswamy, H. S., & Simpson, B. K. (2006). Physicochemical changes induced in carp (Cyprinus carpio) fillets by high pressure processing at low temperature. Innovative Food Science & Emerging Technologies, 7(1-2), 13–18. https://doi.org/10.1016/j.ifset.2005.06.006. ArticleGoogle Scholar
- Singh, A., & Ramaswamy, H. (2013). Effect of high pressure processing on color and textural properties of eggs. Journal of Food Research, 2(4), 11–24. https://doi.org/10.5539/jfr.v2n4p11. ArticleGoogle Scholar
- Singh, S., & Shalini, R. (2016). Effect of hurdle technology in food preservation: a review. Critical Reviews in Food Science and Nutrition, 56(4), 641–649. https://doi.org/10.1080/10408398.2012.761594. ArticleGoogle Scholar
- Teixeira, J. S., Maier, M. B., Miller, P., Gänzle, M. G., & McMullen, L. M. (2016). The effect of growth temperature, process temperature, and sodium chloride on the high-pressure inactivation of Listeria monocytogenes on ham. European Food Research and Technology, 242(12), 2021–2029. https://doi.org/10.1007/s00217-016-2700-6. ArticleGoogle Scholar
- Ting, E., Tremoulet, J., Hopkins, R., & Many, R. (1998). A comparison between UHP hydrostatic exposure and UHP discharge production methods. International Conference on High Pressure Bioscience & Biotechnology, pp. 423-429. Heidelberg, Germany, 30 August-3 September. https://doi.org/10.1007/978-3-642-60196-5_96.
- Torres, J. A., Saraiva, J. A., Guerra-Rodríguez, E., Aubourg, S. P., & Vázquez, M. (2014). Effect of combining high-pressure processing and frozen storage on the functional and sensory properties of horse mackerel (Trachurus trachurus). Innovative Food Science & Emerging Technologies, 21, 2–11. https://doi.org/10.1016/j.ifset.2013.12.001. ArticleGoogle Scholar
- Verbeyst, L., Oey, I., Van der Plancken, I., Hendrickx, M., & Van Loey, A. (2010). Kinetic study on the thermal and pressure degradation of anthocyanins in strawberries. Food Chemistry, 123(2), 269–274. https://doi.org/10.1016/j.foodchem.2010.04.027. ArticleGoogle Scholar
- Wang, L., Huang, P., & Li, Y. (2016). Effects of thermal treatment combined with multi-cycle high pressure processing on the bacterial diversity of mud snail (Bullacta exarata) during refrigerated storage. Food Control, 69, 285–291. https://doi.org/10.1016/j.foodcont.2016.05.016. ArticleGoogle Scholar
- Wang, L., Xia, Q., & Li, Y. (2017). Synergistic effects of high pressure processing and slightly acidic electrolysed water on the inactivation of Bacillus cereus spores. International Journal of Food Science & Technology, 52(11), 2429–2435. https://doi.org/10.1111/ijfs.13527. ArticleGoogle Scholar
- Wang, Q., Zhao, X., Ren, Y., Fan, E., Chang, H., & Wu, H. (2013). Effects of high pressure treatment and temperature on lipid oxidation and fatty acid composition of yak (Poephagus grunniens) body fat. Meat Science, 94(4), 489–494. https://doi.org/10.1016/j.meatsci.2013.03.006. ArticleGoogle Scholar
- Wang, Y., Zhou, Y., & Li, P.-j., Wang, X.-x., Cai, K.-z., & Chen, C.-g. (2018). Combined effect of CaCl2 and high pressure processing on the solubility of chicken breast myofibrillar proteins under sodium-reduced conditions. Food Chemistry, 269, 236–243. https://doi.org/10.1016/j.foodchem.2018.06.107.
- Ye, M., Huang, Y., & Chen, H. (2012). Inactivation of Vibrio parahaemolyticus and Vibrio vulnificus in oysters by high-hydrostatic pressure and mild heat. Food Microbiology, 32(1), 179–184. https://doi.org/10.1016/j.fm.2012.05.009. ArticleGoogle Scholar
- Yordanov, D., & Angelova, G. (2010). High pressure processing for foods preserving. Biotechnology & Biotechnological Equipment, 24(3), 1940–1945. https://doi.org/10.2478/V10133-010-0057-8. ArticleGoogle Scholar
- Zhu, J., Wang, Y., Li, X., Li, B., Liu, S., Chang, N., Jie, D., Ning, C., Gao, H., & Meng, X. (2017). Combined effect of ultrasound, heat, and pressure on Escherichia coli O157:H7, polyphenol oxidase activity, and anthocyanins in blueberry (Vaccinium corymbosum) juice. Ultrasonics Sonochemistry, 37, 251–259. https://doi.org/10.1016/j.ultsonch.2017.01.017. ArticleGoogle Scholar
Funding
This project was supported by the National Overseas Scholarship, Government of India.